• Users Online: 121
  • Home
  • Print this page
  • Email this page
Home About us ASMR Conference Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2018  |  Volume : 13  |  Issue : 1  |  Page : 25-31

Photobiomodulation therapy for diabetic macular edema: Fourier transform infrared spectroscopy study

1 Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
2 Physics Department, Faculty of Science, AL Azhar University (Girls), Cairo, Egypt

Correspondence Address:
Salwa A Abdelkawi
Biophysics and Laser Science Unit, Vision Sciences Department, Research Institute of Ophthalmology, 2 Elahram Street, Giza, 12511
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jasmr.jasmr_32_17

Rights and Permissions

Background/Aim Photobiomodulation (PBM) is the application of low-level light that has a beneficial biological effect, such as to relieve pain, to heal existing tissue damage, and to inhibit the development of tissue pathology. The aim of the current study is to evaluate the effect of PBM therapy on diabetic macular edema (DME) in albino rats as assessed by Fourier transform infrared spectrum. Materials and methods Twenty-five albino rats with the same sex (200±20 g) were involved in this study. Diabetes was induced in albino rats after intraperitoneal injection of 55 mg/kg streptozotocin. The experimental animals were divided into three main groups: (i) control group, (ii) DME group that did not received any treatment, and (iii) DME group that was exposed to two sessions/week of 660-nm low-level laser source for a period of 2 weeks. The rat’s eye received a power of 5 mW/cm2 for 90 s, with a total energy of 450 mJ, in each session. Fourier transform infrared spectrum analysis was applied after 2 weeks for comparison between the diabetic and PBM-treated groups. Results The results confirmed that DME was associated with changes in the retina structure that appeared after receiving a single dose of streptozotocin 55 mg/kg. These changes obviously appeared in the NH–OH as shown in strO–H (P<0.05), strO–Hsym (P<0.01), C–Hring (P<0.01), CH stretching, fingerprint, and amide I regions. Treatment with PBM significantly improved most of the amide I components except the first peak of β-turn and formation of new bands corresponding to β-sheet. Conclusion The treatment with PBM by using low-level diode laser was associated with different beneficial effects on the retina constituents, as showed by the obvious improvement in the retinal protein secondary structure using Fourier transform infrared analysis. More PBM sessions and long-term follow-up are needed for use of the PBM therapy as a treatment method.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded300    
    Comments [Add]    

Recommend this journal